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Abstract 

This report gives an extensive overview of the univariate extreme value theory including all the formulae 
necessary to carry out an extreme value analysis. This report is the base for a software tool developed for 
extreme value analysis.  

The difference between the marginal and conditional distribution are highlighted as an introduction. The 
parameter estimation techniques of the maximum likelihood theory are discussed and selected for further 
implementation. Some techniques that help in the selection of the appropriate distribution are explained. 
Finally the changes between the updated and the previous methodology are discussed. Formulae of 
selected distributions are summarized in the annexes. 
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 introduction 

 Scope of contract 

Flanders Hydraulic Research (FHR) has commissioned IMDC NV to adapt its standardized methodology for 
rendering composite hydrographs, developed at KU Leuven (Willems 2001 & 2002), to recent evolutions 
(e.g. climate change), updated data series (e.g. recent measurements) and diversifying applications (e.g. 
coastal zone, flood risk calculations,…). 

The project team consists of Sarah Doorme (advisor), Gert Leyssen (Jr. Eng.), Lorens Coorevits (Jr. Eng.) and 
Joris Blanckaert (Sr. Eng. and project manager for IMDC). On behalf of FHR, Eng. Fernando Pereira is in 
charge of the general supervision of the project. Eng. Toon Verwaest of FHR ministers scientific support 
towards coastal zone applications. 

 Overview 

A new methodology is presented, which is based on extended literature review and expertise of the project 
team members. The methodology is described in a set of technical reports and is implemented in a suite of 
software tools for use in flood risk analysis and probabilistic design projects. The Graphical User Interfaces 
of the software tools are described in a set of manuals. 

The new methodology is tested within two representative test cases, i.e. for the Yzer basin and the Scheldt 
basin (navigable waterways in Flanders). The test cases are described in two reports. 

Figure 1-1 presents an overview of the reports, tools and manuals. 

Figure 1-1: Overview of reports, tools and manuals 
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 This report 

This report provides an overview of the univariate extreme value theory which consists of a combination of 
the standardized methodology for Extreme Value Analysis, developed at KU Leuven (Willems 2001 & 2002), 
international standard literature (Coles, 2001, Kotz, 2000, Nelsen, 2004) and Beirlant’s masterpiece 
(Beirlant, 2004). This overview is used to implement a software tool for extreme value analysis (see Figure 
1-1). To keep the text readable a lot of the derivations are attached in the different annexes. 

The 2st chapter gives an introduction in the univariate extreme value theory with its marginal and 
conditional domain. The 3nd chapter deals with parameter estimation by the maximum likelihood 
methodology. The 4th chapter contains some methods to select the correct distribution for a set of 
observation. Finally the 5th chapter gives an overview of the most important changes in the new 
methodology. 
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 Extreme value statistics: an overview 

 Introduction 

Extreme value statistics is unique as a statistical discipline in that it develops techniques and models for 
describing the unusual rather than the usual. Extreme values are by definition scarce which implies that 
estimates are required for values that are much greater (or smaller) than values that are already observed. 
Extreme value theory provides a number of models for the extrapolation to these extreme values 
combined with a number of tools to choose the correct model for the specific phenomena.  

A distinction can be made between the classic extreme value theory with marginal distributions based on 
block maxima and the threshold extreme value theory with conditional distributions based on POT values. 
It should be noted that every marginal distribution has a conditional counterpart and vice versa. 

 Marginal distributions: theory 

2.2.1 Generalized extreme value distribution (GEV) 

The classic extreme value theory focuses on the statistical behavior of block maxima (M) 

𝑀𝑀𝑛𝑛 = 𝑚𝑚𝑚𝑚𝑚𝑚{𝑋𝑋1, … , 𝑋𝑋𝑛𝑛} 

A linear renormalization of the variable Mn (set of block maxima) by appropriate choices of the constants an 

and bn yields M*n. 

𝑀𝑀𝑛𝑛
∗ =

𝑀𝑀𝑛𝑛 − 𝑏𝑏𝑛𝑛

𝑚𝑚𝑛𝑛
 𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑚𝑚𝑛𝑛 > 0 

It is stated that if there exist sequences of constants { an >0} and { bn } such that 

𝑃𝑃𝑃𝑃{𝑀𝑀𝑛𝑛
∗ < 𝑧𝑧} → 𝐺𝐺(𝑧𝑧) 𝑚𝑚𝑎𝑎 𝑛𝑛 → ∞ 

For a non-degenerate distribution function G, then G is a member of the GEV family. 

 
𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑚𝑚𝑒𝑒 �− �1 + 𝜉𝜉 �

𝑧𝑧 − 𝜇𝜇
𝜎𝜎

��
−1/𝜉𝜉

� 
1 

Defined by �𝑧𝑧 ∶ 1 + 𝜉𝜉(𝑧𝑧−𝜇𝜇)
𝜎𝜎

> 0�, where -∞<μ<∞, σ>0 en -∞<ξ<∞. In subset of GEV with ξ=0 is interpreted 
as the limit of the above distribution as ξ→0: 

 𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑚𝑚𝑒𝑒 �− �− �
𝑧𝑧 − 𝜇𝜇

𝜎𝜎
��� ,   − ∞ < 𝑧𝑧 < ∞ 2 

The problem that the constants an and bn are unknown, can be easily resolved by: 

𝑃𝑃𝑃𝑃 �
𝑀𝑀𝑛𝑛 − 𝑏𝑏𝑛𝑛

𝑚𝑚𝑛𝑛
 < 𝑧𝑧� ≈ 𝐺𝐺(𝑧𝑧) 𝑚𝑚𝑎𝑎 𝑛𝑛 → ∞ 

𝑃𝑃𝑃𝑃{𝑀𝑀𝑛𝑛 < 𝑧𝑧} ≈ 𝐺𝐺 �
𝑧𝑧 − 𝑏𝑏𝑛𝑛

𝑚𝑚𝑛𝑛
�  𝑚𝑚𝑎𝑎 𝑛𝑛 → ∞ 

𝑃𝑃𝑃𝑃{𝑀𝑀𝑛𝑛 < 𝑧𝑧} ≈ 𝐺𝐺∗(𝑧𝑧) 𝑚𝑚𝑎𝑎 𝑛𝑛 → ∞ 
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Where G* is another member of the GEV family, with a different set of model parameters. The model 
parameters of the GEV distribution can be estimated by fitting the distribution through a set of block 
maxima obtained from a set of independent observations.  

The GEV distribution is determined by three parameters: 

• ξ = shape parameter 

• μ = location parameter 

• σ = scale parameter 

By inverting equation 1 the return levels corresponding to the probabilities p are given by (see Annex C): 

 
𝑧𝑧𝑝𝑝 = �

𝜇𝜇 −
𝜎𝜎
𝜉𝜉 �1 − {−𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑒𝑒)}−𝜉𝜉� 𝑤𝑤𝑖𝑖 𝜉𝜉 ≠ 0

𝜇𝜇 − 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙{−𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑒𝑒)} 𝑤𝑤𝑖𝑖 𝜉𝜉 = 0
 

 

3 

Where zp is the return level, p the exceedance frequency and 1/p is the return period which implies that zp 
is exceeded by a random block maximum with a frequency p (Coles 2001; Kotz 2002).  

To obtain a better insight in the behavior of the GEV distribution an example is displayed in Figure 2-1. The 
tail behavior is illustrated in Figure 2-2. The four formulae used in Figure 2-1 are summarized in annex A.1. 

Figure 2-1: GEV with parameters (μ, σ, ξ )= (3.87, 0.198, -0.05) 
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Figure 2-2: Tail behaviour of GEV with different values of ξ 

 
The Generalized Extreme Value distribution can be divided in three classes, as shown in Figure 2-3 and the 
formula below, based on the weight of the tail ξ. If the distribution has a light tail, ξ<0, the distribution is 
part of the extreme value Weibull domain. The distributions of these families have an upper boundary z+. If 
ξ=0, the distribution belongs to the Gumbel domain and they decrease exponentially towards infinity. The 
third family is the Fréchet family. These distributions have a heavy tail which decrease polynomially 
towards infinity (Coles 2001).  

Figure 2-3: The three marginal extreme value families 
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𝐼𝐼𝐼𝐼𝐼𝐼: 𝐸𝐸𝐸𝐸 𝑊𝑊𝑒𝑒𝑤𝑤𝑏𝑏𝑊𝑊𝑙𝑙𝑙𝑙 (𝜉𝜉 < 0) 
𝐺𝐺(𝑧𝑧) = �𝑒𝑒𝑚𝑚𝑒𝑒 �− �− �

𝑧𝑧 − 𝜇𝜇
𝜎𝜎 �

𝜉𝜉
�� , 𝑧𝑧 < 𝜇𝜇

1 , 𝑧𝑧 ≥ 𝜇𝜇
 

𝐼𝐼𝐼𝐼: 𝐺𝐺𝑊𝑊𝑚𝑚𝑏𝑏𝑒𝑒𝑙𝑙 (𝜉𝜉 = 0)  𝐺𝐺(𝑧𝑧) = exp �−𝑒𝑒𝑚𝑚𝑒𝑒 �− �
𝑧𝑧 − 𝜇𝜇

𝜎𝜎 ���     , −∞ < 𝑧𝑧
< ∞  

𝐼𝐼: 𝐹𝐹𝑃𝑃é𝑐𝑐ℎ𝑒𝑒𝑤𝑤 (𝜉𝜉 > 0)  
𝐺𝐺(𝑧𝑧) = �

0     , 𝑧𝑧 ≤ 𝜇𝜇

𝑒𝑒𝑚𝑚𝑒𝑒 �− �
𝑧𝑧 − 𝜇𝜇

𝜎𝜎 �
−𝜉𝜉

�     , 𝑧𝑧 > 𝜇𝜇  

 

 Conditional distributions: theory 

The use of block maxima and the corresponding marginal distribution can be a wasteful way to use data. If 
continuous time series of hourly or daily observations are available the data can be used more efficient by 
abandoning the blocking procedure. Let X1, X2 , …Xn be a sequence of independent and identically 
distributed random variables, having a marginal distribution function F. We are interested in extreme 
events, i.e. the events with Xi that exceed some high threshold u. The description of the stochastic behavior 
of these extreme events is given by the conditional probability: 

 𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑊𝑊 + 𝑦𝑦|𝑋𝑋 > 𝑊𝑊} =
1 − 𝐺𝐺(𝑊𝑊 + 𝑦𝑦)

1 − 𝐺𝐺(𝑊𝑊)
   , 𝑦𝑦 > 0   , 𝑦𝑦 = 𝑚𝑚 − 𝑊𝑊 

4 

This formula allows us to transform any marginal distribution to its conditional counterpart (Coles 2001). 

2.3.1 Generalized Pareto distribution (GPD) 

If block maxima have an approximate marginal distribution G, part of the GEV distribution, then the 
threshold excesses have a corresponding approximate distribution within the Generalized Pareto (GPD) 
family. The parameters of the GPD are uniquely determined by the associated GEV distribution of the block 
maxima. This statement can be validated by applying eq. 1 in eq. 4 (see derivation in Annex B.1). The 
survival function of the GPD is given by: 

 
𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑊𝑊 + 𝑦𝑦|𝑋𝑋 > 𝑊𝑊} = 1 − 𝐺𝐺(𝑦𝑦) = 1 − �1 +

𝜉𝜉𝑦𝑦
𝜎𝜎� �

−1/𝜉𝜉

𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝑦𝑦 > 0 , (1 +  
𝜉𝜉𝑦𝑦
𝜎𝜎�

) > 0  
5 

Where 𝜎𝜎� is uniquely determined by the parameters of the corresponding GEV distribution and the shape 
parameters are equal. 

𝜎𝜎� = 𝜎𝜎 + 𝜉𝜉(𝑊𝑊 − 𝜇𝜇) 

An extra advantage is that where the parameters σ and μ of a GEV distribution will change by a change of 
the block size n, the parameter 𝜎𝜎� of the corresponding GPD is unperturbed by the changes of σ and μ which 
are self-compensating (Coles 2001). 

 

Similar to the GEV distribution, the shape parameter ξ is dominant in determining the behavior of the GPD. 
If ξ<0 the distribution has an upper bound of 𝑊𝑊 − 𝜎𝜎�/𝜉𝜉. If ξ>0 as well as in case ξ=0 the distribution has no 
upper limit. In the latter case eq. 5 can be written: 

 𝐺𝐺(𝑦𝑦) = 1 − 𝑒𝑒𝑚𝑚𝑒𝑒 �
−𝑦𝑦
𝜎𝜎�

�   6 
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Further on in this report the parameter 𝜎𝜎� of the GDP will be written as σ. Similar to the derivation of the 
GPD from the GEV, the conditional forms of the different families can be derived from the marginal form 
(Coles 2001) as shown in Annex B.  

The return levels are given by (see Annex C): 

 

𝑚𝑚𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧𝑊𝑊 +

𝜎𝜎
𝜉𝜉

 ��
𝑇𝑇 ∗ 𝑛𝑛𝑦𝑦 ∗ 𝑘𝑘

𝑛𝑛 �
𝜉𝜉

− 1� 𝑤𝑤𝑖𝑖 𝜉𝜉 ≠ 0 

𝑊𝑊 +  𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇 ∗ 𝑛𝑛𝑦𝑦 ∗ 𝑘𝑘

𝑛𝑛 � 𝑤𝑤𝑖𝑖 𝜉𝜉 = 0

 

7 

Where ny is the number of observations in a year, n the total amount of observations, k the number of 
observations that exceed the threshold u and T=1/p the return level. The number of years of data is in most 
cases used as an estimator for 𝑛𝑛

𝑛𝑛𝑦𝑦
. This yields: 

 

𝑚𝑚𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧𝑊𝑊 +

𝜎𝜎
𝜉𝜉

 ��
𝑇𝑇 ∗ 𝑘𝑘

𝐴𝐴
�

𝜉𝜉

− 1� 𝑤𝑤𝑖𝑖 𝜉𝜉 ≠ 0 

𝑊𝑊 +  𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇 ∗ 𝑘𝑘

𝐴𝐴
� 𝑤𝑤𝑖𝑖 𝜉𝜉 = 0

 

8 

To get a better understanding in the behavior of the GPD an example if displayed in Figure 2-4. 

Figure 2-4: GPD with ξ=0.184, 𝜎𝜎�=7.44 and u=30. 
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 Parameter estimation 

 Introduction 

The parameter estimation of the extreme value distributions is done by the maximum likelihood 
estimation. The results of the obtained distribution can be evaluated by comparison with the empirical 
distribution.  

 Empirical 

The empirical probability of exceedance of a set of observations, in this case block maxima or POT values, 
can be found by sorting the observation from large to small 

𝑧𝑧1 > 𝑧𝑧2 > ⋯ > 𝑧𝑧𝑛𝑛 

The exceedance probability (empirical cumulative density function) is given by: 

�𝑧𝑧𝑖𝑖 ,
𝑤𝑤

𝑛𝑛 + 1
� 

 Maximum likelihood estimation 

The parameter values of the distributions can be determined by Maximum Likelihood Estimation (MLE). 
This method is a well-known statistical method used for fitting a statistical model to data and providing 
estimates for the model’s parameters. Under the assumption that z1, …, zn are n independent random 
variables with a probability density function, g(z), with parameters θ, the likelihood function is given by 

 
𝐿𝐿(𝜃𝜃) = � 𝑙𝑙(𝑧𝑧𝑖𝑖; 𝜃𝜃)

𝑛𝑛

𝑖𝑖=1

 
9 

In practice it is more convenient to work with the logarithm of the likelihood function, the so called log-
likelihood (Beirlant, 2004). 

 
𝐿𝐿(𝜃𝜃) = � 𝑙𝑙𝑙𝑙𝑙𝑙(𝑙𝑙(𝑧𝑧𝑖𝑖; 𝜃𝜃))

𝑛𝑛

𝑖𝑖=1

 
10 

Maximization of the log-likelihood in function of the parameters θ yields in the maximum likelihood 
estimator θMLE. This estimator has an approximate normal distribution which can be used to estimate a 
confidence interval by means of the variance-covariance matrix. 

These confidence intervals can be used in the estimation of confidence intervals for the return level (zm). 
The variance of this return level can be calculated by the delta method (with T the transpose of the matrix). 

𝐸𝐸𝑚𝑚𝑃𝑃(𝑧𝑧𝑚𝑚) ≈ 𝛻𝛻𝑧𝑧𝑚𝑚
𝑇𝑇 ∗ 𝐸𝐸 ∗ 𝛻𝛻𝑧𝑧𝑚𝑚,    𝑤𝑤𝑤𝑤𝑤𝑤ℎ 𝛻𝛻𝑧𝑧𝑚𝑚

𝑇𝑇 =
𝜕𝜕𝑧𝑧𝑚𝑚

𝜕𝜕𝜃𝜃
 

Where V is the variance-covariance matrix of θMLE (Coles 2001). 
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The maximum likelihood functions of the GEV and the GPD distributions are evaluated in the next 
subsections. The equations for the conditional Weibull distribution, the exponential distribution, the Pareto 
distribution and the Gumbel distribution are shown in Annex D.  

3.3.1 GEV distribution 

In case of a GEV distribution the log-likelihood if ξ≠0 is given by (Coles 2001): 

 
𝑙𝑙(𝜇𝜇, 𝜎𝜎, 𝜉𝜉) = −𝑛𝑛 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝜎𝜎) − �1 +

1
𝜉𝜉

� � 𝑙𝑙𝑙𝑙𝑙𝑙 �1 + 𝜉𝜉 �
𝑧𝑧𝑖𝑖 − 𝜇𝜇

𝜎𝜎
�� −

𝑛𝑛

𝑖𝑖=1

� �1 + 𝜉𝜉 �
𝑧𝑧𝑖𝑖 − 𝜇𝜇

𝜎𝜎
��

−1/𝜉𝜉𝑛𝑛

𝑖𝑖=1

 
11 

Provided that �𝑧𝑧 ∶ 1 + 𝜉𝜉(𝑧𝑧−𝜇𝜇)
𝜎𝜎

> 0�. If ξ=0 this equation becomes 

 
𝑙𝑙(𝜇𝜇, 𝜎𝜎) = −𝑛𝑛 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝜎𝜎) − � �

𝑧𝑧𝑖𝑖 − 𝜇𝜇
𝜎𝜎

� −
𝑛𝑛

𝑖𝑖=1

� 𝑒𝑒𝑚𝑚𝑒𝑒 �− �
𝑧𝑧𝑖𝑖 − 𝜇𝜇

𝜎𝜎
��

𝑛𝑛

𝑖𝑖=1

 
12 

 

The obtained parameters can be used to calculate the maximum likelihood return level. 

𝑧𝑧𝑚𝑚 = �
𝜇𝜇 −

𝜎𝜎
𝜉𝜉 �1 − {−𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑒𝑒)}−𝜉𝜉� , 𝜉𝜉 ≠ 0

𝜇𝜇 − 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙{−𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑒𝑒)} , 𝜉𝜉 = 0
 

The variance estimated by the delta method is given by: 

𝐸𝐸𝑚𝑚𝑃𝑃(𝑧𝑧𝑚𝑚) ≈ ∇𝑧𝑧𝑚𝑚
T ∗ V ∗ ∇𝑧𝑧𝑚𝑚 

Where V is the variance-covariance matrix of (μ,σ,ξ) and 

∇𝑧𝑧𝑚𝑚
T = �

∂zm

∂μ
,
∂zm

∂σ
,
∂zm

∂𝜉𝜉 � = �1, −
�1 − ym

−𝜉𝜉�
𝜉𝜉

,
𝜎𝜎�1 − ym

−𝜉𝜉�
𝜉𝜉2 −

𝜎𝜎ym
−𝜉𝜉log(ym)

𝜉𝜉 
� 

With 

ym = −log (1 − p) 

3.3.2 GPD distribution 

The log likelihood function of the Generalized Pareto Distribution is given by (Coles 2001): 

 
𝑙𝑙(𝜎𝜎, 𝜉𝜉) = −𝑘𝑘 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝜎𝜎) − �1 +

1
𝜉𝜉

� � 𝑙𝑙𝑙𝑙𝑙𝑙 �1 + 𝜉𝜉
𝑦𝑦𝑖𝑖

𝜎𝜎
�

𝑘𝑘

𝑖𝑖=1

,   𝑦𝑦 = 𝑧𝑧 − 𝑊𝑊 
13 

Provided that �1 + 𝜉𝜉𝑦𝑦𝑖𝑖
𝜎𝜎

> 0 𝑣𝑣𝑙𝑙𝑙𝑙𝑃𝑃 𝑤𝑤 = 1, … , 𝑘𝑘�. If ξ=0 this equation becomes 

 
𝑙𝑙(𝜎𝜎) = −𝑘𝑘 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝜎𝜎) −

1
𝜎𝜎

� 𝑦𝑦𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 
14 
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The obtained parameters can be used to calculate the maximum likelihood return level. 

𝑧𝑧𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧𝑊𝑊 +

𝜎𝜎
𝜉𝜉

 ��
𝑇𝑇 ∗ 𝑘𝑘

𝐴𝐴
�

𝜉𝜉

− 1� 𝑣𝑣𝑙𝑙𝑙𝑙𝑃𝑃 𝜉𝜉 ≠ 0 

𝑊𝑊 +  𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇 ∗ 𝑘𝑘

𝐴𝐴
� 𝑣𝑣𝑙𝑙𝑙𝑙𝑃𝑃 𝜉𝜉 = 0

 

The variance estimated by the delta method is given by: 

𝐸𝐸𝑚𝑚𝑃𝑃(𝑧𝑧𝑚𝑚) ≈ 𝛻𝛻𝑧𝑧𝑚𝑚
𝑇𝑇 ∗ 𝐸𝐸 ∗ 𝛻𝛻𝑧𝑧𝑚𝑚 

where V is the variance-covariance matrix of (σ,ξ) and 

∇𝑧𝑧T = �
∂zm

∂σ
,
∂zm

∂𝜉𝜉 � =

⎣
⎢
⎢
⎢
⎡
  

��T ∗ k
A �

−𝜉𝜉
− 1�

𝜉𝜉
, −

𝜎𝜎 ��T ∗ k
A �

−𝜉𝜉
− 1�

𝜉𝜉2 +
𝜎𝜎 �T ∗ k

A �
𝜉𝜉

log �T ∗ k
A �

𝜉𝜉
⎦
⎥
⎥
⎥
⎤
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 Selection of appropriate conditional distribution 

There are some tools to select the right distribution for a dataset. A maximum likelihood estimation will 
give the best fit of the selected distribution though a dataset but doesn’t guarantee that this distribution is 
appropriate. The following tools are available to select the best conditional distribution. 

 Excess functions 

By means of the mean excess function it is possible to get an estimate of the right distribution. The mean 
excess is the mean of excess values of all POT values exceeding the threshold. Every conditional distribution 
has a mean excess function which give the mean excess in function of a threshold (u). The shape of the 
empirical mean excess function can be compared with theoretical mean excess function of the different 
distributions. If the empirical mean excess function has an increasing trend the corresponding distribution 
will belong to the GPD (𝜉𝜉 > 0), the Pareto distribution or the Conditional Weibull distribution (𝜏𝜏 < 1). In 
case of a horizontal mean excess function the data will follow a GPD (𝜉𝜉 = 0), or an exponential distribution. 
If the mean excess function is decreasing in function of the threshold the observation set will belong to the 
GPD (𝜉𝜉 < 0), or the CWD (𝜏𝜏 > 1). This comparison can be made before fitting the parameters of a 
distribution (Figure 4-1; Table 4-1). 

A second advantage of the mean excess function is its use in the determination of the optimal threshold. A 
too low threshold will likely violate the asymptotic basis of the model, leading to bias and a too high 
threshold will generate few excesses with which the model can be estimated, leading to high variance. The 
empirical mean excess function has to keep the same trend above this optimal threshold (Coles 2001; 
Beirlant 2004). 

Table 4-1: Mean excess functions (Beirlant 2004) 

Distribution Mean excess function 

GPD 𝐸𝐸(𝑋𝑋 − 𝑊𝑊|𝑋𝑋 > 𝑊𝑊) =
𝜎𝜎 + 𝜉𝜉𝑊𝑊
1 − 𝜉𝜉

 

Exponential distribution 𝐸𝐸(𝑋𝑋 − 𝑊𝑊|𝑋𝑋 > 𝑊𝑊) =
1
𝜆𝜆

 

Pareto distribution 𝐸𝐸(𝑋𝑋 − 𝑊𝑊|𝑋𝑋 > 𝑊𝑊) =
𝜆𝜆𝑊𝑊

1 + 𝜆𝜆
 

Conditional Weibull distribution 𝐸𝐸(𝑋𝑋 − 𝑊𝑊|𝑋𝑋 > 𝑊𝑊) =
𝑊𝑊1−𝜏𝜏

𝜆𝜆𝜏𝜏
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The empirical mean excess function can be found by: 

�̂�𝑒𝑘𝑘 =
∑ 𝑋𝑋𝑖𝑖 ∗ 1(𝑢𝑢,∞)(𝑋𝑋𝑖𝑖)𝑘𝑘

𝑖𝑖=1

∑ 1(𝑢𝑢,∞)(𝑋𝑋𝑖𝑖)𝑘𝑘
𝑖𝑖=1

− 𝑊𝑊 

Where 1(𝑢𝑢,∞)(𝑚𝑚𝑖𝑖) equals 1 if xi >u, and 0 otherwise (Beirlant 2004). 

Figure 4-1: Mean excess functions 

 

 RMSE as a parameter of the goodness of fit 

Once the parameters of the selected distribution are determined the root mean square error (RMSE) 
between the empirical and the model values can be calculated. This is done by assigning an exceedance 
probability to every observation above the optimal threshold u. After sorting the observations from large to 
small 

𝑋𝑋1 ≥ 𝑋𝑋2 ≥ ⋯ ≥ 𝑋𝑋𝑘𝑘 

the exceedance frequencies corresponding to the sorted observations are calculated by: 

𝑒𝑒𝑖𝑖 =
𝑤𝑤

𝑘𝑘 + 1
 

These frequencies are used in the inverse cumulative distribution to calculate the estimated observations 
M1, …, Mk. The RMSE of X and M gives an estimation of the goodness of fit of the selected distribution. 

𝑅𝑅𝑀𝑀𝑅𝑅𝐸𝐸 = �∑ (𝑋𝑋𝑖𝑖 − 𝑀𝑀𝑖𝑖)2𝑘𝑘
𝑖𝑖=1

𝑘𝑘
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 Confidence intervals of the parameters 

The confidence intervals of the parameters give an impression of the possible variation. The confidence 
intervals are calculated based on the standard deviation and mean value of the parameters obtained in the 
maximum likelihood fit. Very wide confidence intervals will result in a very uncertain return level. A large 
variation can be caused by a small dataset or an inappropriate choice of distribution. 

 Visual control of the return level plot 

The goal of an extreme value analysis is the extrapolation to return periods and corresponding return levels 
higher values than the empirical values. So the return period vs. return level plot is of major importance. 
There has to be a good similarity between the calculated curve and the empirical values in the low return 
period domain to give reliable extrapolation values. A visual check is a useful tool to guarantee this 
similarity. 

 Check of the Poisson process 

By assigning an empirical probability of i/(1+n) to the POT values an implicit assumption of a stationary 
Poisson process is made. This means that the occurrence of extreme values follows a Poisson distribution 
and that the values are not clustered. A check of this assumption is the dispersion coefficient (Vitolo 2009). 
This is the ratio of the variance and the mean of the number of POT per year. A dispersion smaller than 1 
indicates a more regularly process and larger than 1 indicates clustering. 
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 Changes in the methodology 

This chapter gives an overview of the most important changes in the new methodology in comparison with 
the ‘standard methodology’ for Extreme Value Analysis (Willems 2001 & 2002). 

 Parameters estimation by the MLE method 

The most important change in the new methodology is the parameter estimation. The parameters are 
estimated by a more reliable maximum likelihood technique in the new methodology, instead of 
linearization of the QQ-plots, like the Hill estimator. The MLE likelihood allows to estimate the parameters 
of more distributions like the GEV and GPD distributions while this was not included in the previous 
methodology.  

 Weight factor 

The weight factor of the ‘standard methodology’ is not included in the new methodology. This weight 
factor was used in the parameterization of the Pareto distribution and the calculation of the mean square 
error. For observations sorted from large to small the weight factor was given by: 

𝑤𝑤𝑖𝑖 = −
1

log �𝑤𝑤
𝑘𝑘�

 

With i the observations number and k the number of observations. This factor takes the heteroscedasticity, 
i.e. increasing variance with increasing observation value, into account by assigning a smaller weight to the 
larger observations (Figure 5-1).  

Figure 5-1: Weight factor of the standard methodology  

 
(high POT value have a low weight factor) 
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The parameterization and the calculation of the RMSE in the new methodology does not use this weighting 
factor for 2 reasons: 

• The very large observations have indeed a larger variation but are on the other hand also more 
rare. So their impact on the parameter estimation will be rather small. 

• The implied weight factor is considered rather strictly for the large observation, because they get a 
very low weight factor. A low MSE or RMSE calculated with the weighting factor means the 
distribution has a good fit for the lower observations but not necessarily for the high observation. 
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Appendix A: Extreme value model formulae 

GEV 

Function Formula Properties 

Cumulative 
density 
function 

⎩
⎨

⎧𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑚𝑚𝑒𝑒 �− �1 + 𝜉𝜉 �
𝑧𝑧 − 𝜇𝜇

𝜎𝜎
��

−1/𝜉𝜉
� 𝜉𝜉 ≠ 0

𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑚𝑚𝑒𝑒 �− �− �
𝑧𝑧 − 𝜇𝜇

𝜎𝜎
��� 𝜉𝜉 = 0

 
�𝑧𝑧 ∶ 1 +

𝜉𝜉(𝑧𝑧 − 𝜇𝜇)
𝜎𝜎

> 0� 

-∞<μ<∞, σ>0 
-∞<ξ<∞ 

Survival 
function 

⎩
⎨

⎧1 − 𝐺𝐺(𝑧𝑧) = 1 − 𝑒𝑒𝑚𝑚𝑒𝑒 �− �1 + 𝜉𝜉 �
𝑧𝑧 − 𝜇𝜇

𝜎𝜎
��

−1/𝜉𝜉
� 𝜉𝜉 ≠ 0

1 − 𝐺𝐺(𝑧𝑧) = 1 − 𝑒𝑒𝑚𝑚𝑒𝑒 �− �− �
𝑧𝑧 − 𝜇𝜇

𝜎𝜎
��� 𝜉𝜉 = 0

 -∞<μ<∞, σ>0 
-∞<ξ<∞ 

Probability 
density 
function 

𝑙𝑙(𝑧𝑧) =
1
𝜎𝜎 �1 + 𝜉𝜉 �

𝑧𝑧 − 𝜇𝜇
𝜎𝜎

��
�−1

𝜉𝜉�−1
𝑒𝑒𝑚𝑚𝑒𝑒 �− �1 + 𝜉𝜉 �

𝑧𝑧 − 𝜇𝜇
𝜎𝜎

��
−1/𝜉𝜉

� 
-∞<μ<∞, σ>0 

-∞<ξ<∞ 

Return 
level 𝑧𝑧𝑝𝑝 = �

𝜇𝜇 −
𝜎𝜎
𝜉𝜉 �1 − {−𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑒𝑒)}−𝜉𝜉� 𝜉𝜉 ≠ 0

𝜇𝜇 − 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙{−𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑒𝑒)} 𝜉𝜉 = 0
 

p=probability 
-∞<μ<∞, σ>0 

-∞<ξ<∞ 

 

Gumbel distribution 

Function Formula Properties 
Cumulative 

density 
function 

𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑚𝑚𝑒𝑒 �−𝑒𝑒𝑚𝑚𝑒𝑒 �−
𝑧𝑧 − 𝜇𝜇

𝜎𝜎
�� -∞<z<∞ 

Survival 
function 1 − 𝐺𝐺(𝑧𝑧) = 1 − 𝑒𝑒𝑚𝑚𝑒𝑒 �−𝑒𝑒𝑚𝑚𝑒𝑒 �−

𝑧𝑧 − 𝜇𝜇
𝜎𝜎

�� -∞<z<∞ 

Probability 
density 
function 

𝐺𝐺(𝑧𝑧) =
𝑒𝑒𝑚𝑚𝑒𝑒 �− 𝑧𝑧 − 𝜇𝜇

𝜎𝜎 �
𝛽𝛽

𝑒𝑒𝑚𝑚𝑒𝑒 �−𝑒𝑒𝑚𝑚𝑒𝑒 �−
𝑧𝑧 − 𝜇𝜇

𝜎𝜎
�� -∞<z<∞ 

Return 
level 

𝑧𝑧𝑝𝑝 = 𝜇𝜇 − 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙{−𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑒𝑒)} p=probability 
-∞<z<∞ 
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GPD (y=x-u) 

Function Formula Properties 

Cumulative 
density 
function 

�
𝐺𝐺(𝑧𝑧) = 1 − �1 +

𝜉𝜉𝑦𝑦
𝜎𝜎 �

−1/𝜉𝜉

𝐺𝐺(𝑧𝑧) = 1 − 𝑒𝑒𝑚𝑚𝑒𝑒 �
−𝑦𝑦
𝜎𝜎

�
 𝑦𝑦 > 0 , (1 + 

𝜉𝜉𝑦𝑦
𝜎𝜎

) > 0 
𝑦𝑦 = z − u 

Survival 
function �

1 − 𝐺𝐺(𝑧𝑧) = �1 +
𝜉𝜉𝑦𝑦
𝜎𝜎 �

−1/𝜉𝜉

1 − 𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑚𝑚𝑒𝑒 �
−𝑦𝑦
𝜎𝜎

�
 𝑦𝑦 > 0 , (1 + 

𝜉𝜉𝑦𝑦
𝜎𝜎

) > 0 
𝑦𝑦 = z − u 

Probability 
density 
function 

𝑙𝑙(𝑧𝑧) =
1
𝜎𝜎 �1 + 𝜉𝜉 �

𝑦𝑦
𝜎𝜎

��
�−1

𝜉𝜉�−1
 𝑦𝑦 > 0 , (1 + 

𝜉𝜉𝑦𝑦
𝜎𝜎

) > 0 

Return 
level 𝑚𝑚𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧𝑊𝑊 +

𝜎𝜎
𝜉𝜉

 ��
𝑇𝑇 ∗ 𝑘𝑘

A
�

𝜉𝜉

− 1� 𝜉𝜉 ≠ 0 

𝑊𝑊 +  𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇 ∗ 𝑘𝑘

𝐴𝐴
� 𝜉𝜉 = 0

 
T= return period 

A= # years of data 
k= # POT above u 

 

Exponential distribution (conditional form y=x-u) 

Function Formula Properties 

Cumulative 
density 
function 

𝐺𝐺(𝑧𝑧) = 1 − 𝑒𝑒𝑚𝑚𝑒𝑒(−𝜆𝜆𝑦𝑦) 𝑦𝑦 > 0 

Survival 
function 1 − 𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑚𝑚𝑒𝑒(−𝜆𝜆𝑦𝑦) 𝑦𝑦 > 0 

Probability 
density 
function 

𝑙𝑙(𝑧𝑧) = 𝜆𝜆 ∗ 𝑒𝑒𝑚𝑚𝑒𝑒(−𝜆𝜆𝑦𝑦) 𝑦𝑦 > 0 

Return 
level 𝑚𝑚𝑚𝑚 = 𝑊𝑊 +

1
𝜆𝜆

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇 ∗ 𝑘𝑘

𝐴𝐴
� 

T= return period 
A= # years of data 
k= # POT above u 
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Pareto distribution (conditional form y=x/u) 

Function Formula Properties 

Cumulative 
density 
function 

𝐺𝐺(𝑧𝑧) = 1 − 𝑦𝑦−𝜆𝜆 𝑦𝑦 > 1 
 

Survival 
function 1 − 𝐺𝐺(𝑧𝑧) = 𝑦𝑦−𝜆𝜆 𝑦𝑦 > 1 

Probability 
density 
function 

𝑙𝑙(𝑧𝑧) = 𝜆𝜆𝑊𝑊𝜆𝜆𝑚𝑚−𝜆𝜆−1  

Return 
level 𝑚𝑚𝑚𝑚 = 𝑊𝑊 �

𝑇𝑇 ∗ 𝑘𝑘
𝐴𝐴

�
1/𝜆𝜆

 
T= return period 

A= # years of data 
k= # POT above u 

 

Conditional Weibull distribution (y=x-u) 

Function Formula Properties 

Cumulative 
density 
function 

𝐺𝐺(𝑧𝑧) = 1 − 𝑒𝑒𝑚𝑚𝑒𝑒(−𝜆𝜆𝑦𝑦𝜏𝜏) 𝑦𝑦 > 0, 𝜏𝜏 > 0 

Survival 
function 1 − 𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑚𝑚𝑒𝑒(−𝜆𝜆𝑦𝑦𝜏𝜏) 𝑦𝑦 > 0, 𝜏𝜏 > 0 

Probability 
density 
function 

𝑙𝑙(𝑧𝑧) = 𝜆𝜆𝜏𝜏𝑦𝑦𝜏𝜏−1𝑒𝑒𝑚𝑚𝑒𝑒(−𝜆𝜆𝑦𝑦𝜏𝜏) 𝑦𝑦 > 0, 𝜏𝜏 > 0 

Return 
level 𝑚𝑚𝑚𝑚 = 𝑊𝑊 + �

1
𝜆𝜆

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇 ∗ 𝑘𝑘

𝐴𝐴
��

1/𝜏𝜏

 
T= return period 

A= # years of data 
k= # POT above u 
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Appendix B: Validation of conditional distributions 

GPD 

Let X have the distribution function F, and for a sufficiently large number of values n: 

𝐹𝐹𝑛𝑛(𝑧𝑧) ≈ 𝑒𝑒𝑚𝑚𝑒𝑒 �− �1 + 𝜉𝜉 �
𝑧𝑧 − 𝜇𝜇

𝜎𝜎
��

−1/𝜉𝜉
� 

With the parameter restriction by �𝑧𝑧 ∶ 1 + 𝜉𝜉(𝑧𝑧−𝜇𝜇)
𝜎𝜎

> 0� , where -∞<μ<∞, σ>0 en -∞<ξ<∞. 

n log 𝐹𝐹(𝑧𝑧) ≈ − �1 + 𝜉𝜉 �
𝑧𝑧 − 𝜇𝜇

𝜎𝜎
��

−1/𝜉𝜉
 

For high values of z a Taylor expansion can be applied: 

log 𝐹𝐹(𝑧𝑧) = log (1 − (1 − 𝐹𝐹(𝑧𝑧)) ≈ −{1 − 𝐹𝐹(𝑧𝑧)} 

After substitution 

1 − 𝐹𝐹(𝑧𝑧) ≈
1
𝑛𝑛 �1 + 𝜉𝜉 �

𝑧𝑧 − 𝜇𝜇
𝜎𝜎

��
−1/𝜉𝜉

 

1 − 𝐹𝐹(𝑊𝑊) ≈
1
𝑛𝑛 �1 + 𝜉𝜉 �

𝑊𝑊 − 𝜇𝜇
𝜎𝜎

��
−1/𝜉𝜉

 

1 − 𝐹𝐹(𝑊𝑊 + 𝑦𝑦) ≈
1
𝑛𝑛 �1 + 𝜉𝜉 �

𝑊𝑊 + 𝑦𝑦 − 𝜇𝜇
𝜎𝜎

��
−1/𝜉𝜉

 

So the conditional probability is given by (y=X-u): 

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑊𝑊 + 𝑦𝑦|𝑋𝑋 > 𝑊𝑊} =
1 − 𝐹𝐹(𝑊𝑊 + 𝑦𝑦)

1 − 𝐹𝐹(𝑊𝑊)
 , 𝑦𝑦 > 0 

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑊𝑊 + 𝑦𝑦|𝑋𝑋 > 𝑊𝑊} ≈
1
𝑛𝑛 �1 + 𝜉𝜉 �𝑊𝑊 + 𝑦𝑦 − 𝜇𝜇

𝜎𝜎 ��
−1/𝜉𝜉

1
𝑛𝑛 �1 + 𝜉𝜉 �𝑊𝑊 − 𝜇𝜇

𝜎𝜎 ��
−1/𝜉𝜉  , 𝑦𝑦 > 0 

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑊𝑊 + 𝑦𝑦|𝑋𝑋 > 𝑊𝑊} = �1 +
𝜉𝜉 �𝑦𝑦

𝜎𝜎�

1 + 𝜉𝜉 �𝑊𝑊 − 𝜇𝜇
𝜎𝜎 �

 �

−1/𝜉𝜉

, 𝑦𝑦 > 0 

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑊𝑊 + 𝑦𝑦|𝑋𝑋 > 𝑊𝑊} = �1 +
𝜉𝜉𝑦𝑦
𝜎𝜎� �

−1/𝜉𝜉

 , 𝑦𝑦 > 0 

With: 

𝜎𝜎� = 𝜎𝜎 + 𝜉𝜉(𝑊𝑊 − 𝜇𝜇) 

The cumulative distribution formula is given by: 

𝐺𝐺(𝑧𝑧) = 1 − �1 +
𝜉𝜉𝑦𝑦
σ �

−1/𝜉𝜉

 

In the case of ξ=0 this formula can be transformed by taking the limit of ξ → 0 : 

𝐺𝐺(𝑧𝑧) = 1 − exp �
−y
𝜎𝜎

� 
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Exponential distribution 

The same derivation can be applied for the exponential distribution.  

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑊𝑊 + 𝑦𝑦|𝑋𝑋 > 𝑊𝑊} =
1 − 𝐹𝐹(𝑊𝑊 + 𝑦𝑦)

1 − 𝐹𝐹(𝑊𝑊)  , 𝑦𝑦 > 0 

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑊𝑊 + 𝑦𝑦|𝑋𝑋 > 𝑊𝑊} =
exp (−𝜆𝜆(𝑊𝑊 + 𝑦𝑦)

exp (−𝜆𝜆𝑊𝑊)
= exp (−𝜆𝜆𝑦𝑦), 𝑦𝑦 > 0 

So the conditional formula of the exponential distribution is exactly the same as the marginal formula. The 
cumulative distribution formula is given by: 

𝐺𝐺(𝑧𝑧) = 1 − 𝑒𝑒𝑚𝑚𝑒𝑒(−𝜆𝜆𝑦𝑦) 

Pareto distribution 

The conditional formula of the Pareto distribution can be found by:  

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑊𝑊 + 𝑦𝑦|𝑋𝑋 > 𝑊𝑊} =
1 − 𝐹𝐹(𝑊𝑊 + 𝑦𝑦)

1 − 𝐹𝐹(𝑊𝑊)  , 𝑦𝑦 > 0 

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑊𝑊 + 𝑦𝑦|𝑋𝑋 > 𝑊𝑊} =
(u + y)−λ

(u)−λ = �
u + y

u
�

−λ
= �

X
u

�
−λ

, 𝑦𝑦 > 0 

This formula can be simplified by the substitution of y=X/u. It is important to keep in mind that the y in the 
Pareto distribution is not the same as the y in the other distributions. This yields in the familiar conditional 
formula of the Pareto distribution: 

𝐺𝐺(𝑧𝑧) = 1 − 𝑦𝑦−𝜆𝜆 

Conditional Weibull distribution 

The Conditional Weibull distribution, as it is implied in various reports, is not the conditional formula of the 
Weibull formula but the Weibull formula used as a conditional formula. This may be a subtle difference but 
it is important to keep it in mind. Because of the wide range of applications of this conditional Weibull 
distribution it is advised to keep it in its current form with y=x-u: 

𝐺𝐺(𝑧𝑧) = 1 − 𝑒𝑒𝑚𝑚𝑒𝑒(−𝜆𝜆𝑦𝑦𝜏𝜏) 
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Appendix C: Derivation of the return level 

GEV 

The return level of a marginal distribution is obtained by inversing the cumulative density function. 

⎩
⎨

⎧𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑚𝑚𝑒𝑒 �− �1 + 𝜉𝜉 �
𝑧𝑧𝑝𝑝 − 𝜇𝜇

𝜎𝜎
��

−1/𝜉𝜉
� = 1 − 𝑒𝑒 , 𝜉𝜉 ≠ 0

𝐺𝐺(𝑧𝑧) = 𝑒𝑒𝑚𝑚𝑒𝑒 �− �− �
𝑧𝑧𝑝𝑝 − 𝜇𝜇

𝜎𝜎
��� = 1 − 𝑒𝑒 , 𝜉𝜉 = 0

 

Rearranging gives the return level in function of the exceedance probability p: 

𝑧𝑧𝑝𝑝 = �
𝜇𝜇 −

𝜎𝜎
𝜉𝜉 �1 − {−𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑒𝑒)}−𝜉𝜉� , 𝜉𝜉 ≠ 0

𝜇𝜇 − 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙{−𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑒𝑒)} , 𝜉𝜉 = 0
 

The probability can be expressed in terms of the return period T (years).  

𝑒𝑒 =

⎩
⎪
⎨

⎪
⎧

1
𝑇𝑇

𝑏𝑏𝑙𝑙𝑙𝑙𝑐𝑐𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑃𝑃 𝑦𝑦𝑒𝑒𝑚𝑚𝑃𝑃
1

12 ∗ 𝑇𝑇
𝑏𝑏𝑙𝑙𝑙𝑙𝑐𝑐𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑃𝑃 𝑚𝑚𝑙𝑙𝑛𝑛𝑤𝑤ℎ

1
365.25 ∗ 𝑇𝑇

𝑏𝑏𝑙𝑙𝑙𝑙𝑐𝑐𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑃𝑃 𝑑𝑑𝑚𝑚𝑦𝑦

 

Gumbel distribution 

The Gumbel distribution is equal to the GEV distribution with ξ=0. This results in a return level given by: 

𝑧𝑧𝑝𝑝 = 𝜇𝜇 − 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙{−𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑒𝑒)} 

The exceedance probability (p) can be expressed in terms of the return period T (years).  

𝑒𝑒 =

⎩
⎪
⎨

⎪
⎧

1
𝑇𝑇

𝑏𝑏𝑙𝑙𝑙𝑙𝑐𝑐𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑃𝑃 𝑦𝑦𝑒𝑒𝑚𝑚𝑃𝑃
1

12 ∗ 𝑇𝑇
𝑏𝑏𝑙𝑙𝑙𝑙𝑐𝑐𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑃𝑃 𝑚𝑚𝑙𝑙𝑛𝑛𝑤𝑤ℎ

1
365.25 ∗ 𝑇𝑇

𝑏𝑏𝑙𝑙𝑙𝑙𝑐𝑐𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑤𝑤𝑚𝑚𝑚𝑚 𝑒𝑒𝑒𝑒𝑃𝑃 𝑑𝑑𝑚𝑚𝑦𝑦
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GPD 

The return level of a corresponding return period can be derived from the survival function 

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑚𝑚|𝑋𝑋 > 𝑊𝑊} = �1 + 𝜉𝜉
𝑚𝑚 − 𝑊𝑊

𝜎𝜎 �
−1/𝜉𝜉

, 𝑦𝑦 > 0 , (1 +  
𝜉𝜉𝑦𝑦
𝜎𝜎�

) > 0  

It follows that:  

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑚𝑚} = 𝜁𝜁𝑢𝑢�1 +
𝜉𝜉𝑦𝑦
𝜎𝜎 �

−1/𝜉𝜉

, 𝑦𝑦 > 0 , (1 +  
𝜉𝜉𝑦𝑦
𝜎𝜎

) > 0  

Where ζu = Pr{X>u}. Hence, the level xm that is exceeded on average once every m observations is the 
solution of:  

𝜁𝜁𝑢𝑢 �1 + 𝜉𝜉 �
𝑚𝑚𝑚𝑚 − 𝑊𝑊

𝜎𝜎
��

−1/𝜉𝜉
=

1
𝑚𝑚

 

Rearranging gives (y=x-u), 
𝑚𝑚𝑚𝑚 = 𝑊𝑊 +

𝜎𝜎
𝜉𝜉

 �(𝑚𝑚𝜁𝜁𝑢𝑢)𝜉𝜉 − 1� 

Provided m is sufficiently large to ensure that xm>u. In case ξ=0 a similar derivation gives: 

𝑚𝑚𝑚𝑚 = 𝑊𝑊 +  𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙(𝑚𝑚𝜁𝜁𝑢𝑢) 

Again provided m is sufficiently large. The natural estimator of ζu is given by:  

𝜁𝜁𝑢𝑢 =
𝑘𝑘
𝑛𝑛

 

With n the total number of observations and k the number of observations exceeding the threshold u. The 
return level is usually expressed in function of return period T.  By expressing m in function of T: 

𝑚𝑚 = 𝑇𝑇 ∗ 𝑛𝑛𝑦𝑦 

With T the return period [year] and ny the number of observations per year: 

𝑚𝑚𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧𝑊𝑊 +

𝜎𝜎
𝜉𝜉

 ��
𝑇𝑇 ∗ 𝑛𝑛𝑦𝑦 ∗ 𝑘𝑘

𝑛𝑛 �
𝜉𝜉

− 1� , 𝜉𝜉 ≠ 0 

𝑊𝑊 +  𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇 ∗ 𝑛𝑛𝑦𝑦 ∗ 𝑘𝑘

𝑛𝑛 � , 𝜉𝜉 = 0

 

Under the assumption of an evenly distribution of the observations over the years, the number of 
observation years (A) can be used as an estimator of 𝑛𝑛

𝑛𝑛𝑦𝑦
: 

𝐴𝐴 =
𝑛𝑛

𝑛𝑛𝑦𝑦
 

This results in: 

𝑚𝑚𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧𝑊𝑊 +

𝜎𝜎
𝜉𝜉

 ��
𝑇𝑇 ∗ 𝑘𝑘

A
�

𝜉𝜉

− 1� , 𝜉𝜉 ≠ 0 

𝑊𝑊 +  𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇 ∗ 𝑘𝑘

𝐴𝐴
� , 𝜉𝜉 = 0
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Exponential distribution  

The return level of the exponential distribution can be derived from the survival function distribution.  

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑚𝑚|𝑋𝑋 > 𝑊𝑊} = exp (−𝜆𝜆𝑦𝑦)   

It follows that:  

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑚𝑚} = 𝜁𝜁𝑢𝑢exp (−𝜆𝜆𝑦𝑦) 

Where ζu = Pr{X>u}. Hence, the level xm that is exceeded on average once every m observations is the 
solution of:  

𝜁𝜁𝑢𝑢exp (−𝜆𝜆𝑦𝑦) =
1
𝑚𝑚

 

Rearranging gives (y=x-u), 

𝑚𝑚𝑚𝑚 = 𝑊𝑊 −
1
𝜆𝜆

𝑙𝑙𝑙𝑙𝑙𝑙 �
1

𝑚𝑚𝜁𝜁𝑢𝑢
� 

Provided m is sufficiently large to ensure that xm>u. The natural estimator of ζu is given by:  

𝜁𝜁𝑢𝑢 =
𝑘𝑘
𝑛𝑛

 

With n the total number of observations and k the number of observations exceeding the threshold u. The 
return level is usually expressed as a function of return period T. By expressing m in function of T: 

𝑚𝑚 = 𝑇𝑇 ∗ 𝑛𝑛𝑦𝑦 

With T the return period [year] and ny the number of observations per year: 

𝑚𝑚𝑚𝑚 =  𝑊𝑊 +
1
𝜆𝜆

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇 ∗ 𝑛𝑛𝑦𝑦 ∗ 𝑘𝑘

𝑛𝑛 � 

Under the assumption of an evenly distribution of the observations over the years, the number of 
observation years (A) can be used as an estimator of 𝑛𝑛

𝑛𝑛𝑦𝑦
: 

𝐴𝐴 =
𝑛𝑛

𝑛𝑛𝑦𝑦
 

This results in: 

𝑚𝑚𝑚𝑚 = 𝑊𝑊 +
1
𝜆𝜆

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇 ∗ 𝑘𝑘

𝐴𝐴
� 
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Pareto distribution 

The return level of the exponential distribution can be derived from the survival distribution.  

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑚𝑚|𝑋𝑋 > 𝑊𝑊} = y−λ   

It follows that:  

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑚𝑚} = 𝜁𝜁𝑢𝑢𝑦𝑦−𝜆𝜆 

Where ζu = Pr{X>u}. Hence, the level xm that is exceeded on average once every m observations is the 
solution of:  

𝜁𝜁𝑢𝑢𝑦𝑦−𝜆𝜆 =
1
𝑚𝑚

 

Rearranging gives (y=x/u), 

𝑚𝑚𝑚𝑚 = 𝑊𝑊 �
1

𝑚𝑚𝜁𝜁𝑢𝑢
�

−1/𝜆𝜆
=  𝑊𝑊(𝑚𝑚𝜁𝜁𝑢𝑢)1/𝜆𝜆 

 

Provided m is sufficiently large to ensure that xm>u. The natural estimator of ζu is given by:  

𝜁𝜁𝑢𝑢 =
𝑘𝑘
𝑛𝑛

 

With n the total number of observations and k the number of observations exceeding the threshold u. The 
return level is usually expressed as a function of return period T. By expressing m in function of T: 

𝑚𝑚 = 𝑇𝑇 ∗ 𝑛𝑛𝑦𝑦 

With T the return period [year] and ny the number of observations per year: 

𝑚𝑚𝑚𝑚 = 𝑊𝑊 �
𝑇𝑇 ∗ 𝑛𝑛𝑦𝑦 ∗ 𝑘𝑘

𝑛𝑛 �
1/𝜆𝜆

 

Under the assumption of an evenly distribution of the observations over the years, the number of 
observation years (A) can be used as an estimator of 𝑛𝑛

𝑛𝑛𝑦𝑦
: 

𝐴𝐴 =
𝑛𝑛

𝑛𝑛𝑦𝑦
 

This results in: 

𝑚𝑚𝑚𝑚 = 𝑊𝑊 �
𝑇𝑇 ∗ 𝑘𝑘

𝐴𝐴
�

1/𝜆𝜆
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Conditional Weibull distribution 

A similar derivation can be applied for the CWD.  

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑚𝑚|𝑋𝑋 > 𝑊𝑊} = exp (−𝜆𝜆𝑦𝑦𝜏𝜏)   

It follows that:  

𝑃𝑃𝑃𝑃{𝑋𝑋 > 𝑚𝑚} = 𝜁𝜁𝑢𝑢𝑒𝑒𝑚𝑚𝑒𝑒 (−𝜆𝜆𝑦𝑦𝜏𝜏) 

Where ζu = Pr{X>u}. Hence, the level xm that is exceeded on average once every m observations is the 
solution of:  

𝜁𝜁𝑢𝑢exp (−𝜆𝜆(𝑚𝑚𝑚𝑚 − 𝑊𝑊)𝜏𝜏) =
1
𝑚𝑚

 

Rearranging gives (y=x-u), 

xm = u + �−
1
λ

log �
1

mζu
��

1/τ

 

Provided m is sufficiently large to ensure that xm>u. The natural estimator of ζu is given by:  

𝜁𝜁𝑢𝑢 =
𝑘𝑘
𝑛𝑛

 

With n the total number of observations and k the number of observations exceeding the threshold u. The 
return level is usually expressed as a function of return period T. By expressing m as a function of T: 

𝑚𝑚 = 𝑇𝑇 ∗ 𝑛𝑛𝑦𝑦 

With T the return period [year] and ny the number of observations per year: 

𝑚𝑚𝑚𝑚 = 𝑊𝑊 + �
1
𝜆𝜆

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇 ∗ 𝑛𝑛𝑦𝑦 ∗ 𝑘𝑘

𝑛𝑛 ��
1/𝜏𝜏

 

Under the assumption of an evenly distribution of the observations over the years, the number of 
observation years (A) can be used as an estimator of 𝑛𝑛

𝑛𝑛𝑦𝑦
: 

𝐴𝐴 =
𝑛𝑛

𝑛𝑛𝑦𝑦
 

This results in: 

𝑚𝑚𝑚𝑚 = 𝑊𝑊 + �
1
𝜆𝜆

𝑙𝑙𝑙𝑙𝑙𝑙 �
𝑇𝑇 ∗ 𝑘𝑘

𝐴𝐴
��

1/𝜏𝜏
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Appendix D: Maximum likelihood estimations 

Gumbel distribution 

The Gumbel log likelihood function is given by: 

 
𝑙𝑙(𝜇𝜇, 𝜎𝜎) = −𝑛𝑛 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝜎𝜎) − � �

𝑧𝑧𝑖𝑖 − 𝜇𝜇
𝜎𝜎

� −
𝑛𝑛

𝑖𝑖=1

� 𝑒𝑒𝑚𝑚𝑒𝑒 �− �
𝑧𝑧𝑖𝑖 − 𝜇𝜇

𝜎𝜎
��

𝑛𝑛

𝑖𝑖=1

 
 

The obtained parameters can be used to calculate the maximum likelihood return level. 

𝑧𝑧𝑚𝑚 = 𝜇𝜇 − 𝜎𝜎𝑙𝑙𝑙𝑙𝑙𝑙{−𝑙𝑙𝑙𝑙𝑙𝑙 (1 − 𝑒𝑒)} 

The variance estimated by the delta method is given by: 

𝐸𝐸𝑚𝑚𝑃𝑃(𝑧𝑧𝑚𝑚) ≈ ∇𝑧𝑧𝑚𝑚
T ∗ V ∗ ∇𝑧𝑧𝑚𝑚 

Where V is the variance-covariance matrix of (μ,σ) and 

𝛻𝛻𝑚𝑚𝑚𝑚
𝑇𝑇 = �

𝜕𝜕𝑧𝑧𝑚𝑚

𝜕𝜕𝜇𝜇
,
𝜕𝜕𝑧𝑧𝑚𝑚

𝜕𝜕𝜎𝜎 � = [1, −𝑙𝑙𝑙𝑙𝑙𝑙( − 𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝑒𝑒))] 

Exponential distribution 

The Likelihood function of the exponential distribution is given by: 

𝐿𝐿(𝜆𝜆) = � 𝜆𝜆 ∗ 𝑒𝑒𝑚𝑚𝑒𝑒(−𝜆𝜆𝑦𝑦𝑖𝑖) = 𝜆𝜆𝑘𝑘𝑒𝑒𝑚𝑚𝑒𝑒(
𝑘𝑘

𝑖𝑖=1

− 𝑘𝑘𝜆𝜆𝑦𝑦�) 

With 

𝑦𝑦� =
1
𝑘𝑘

� 𝑦𝑦𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 

The derivative of the log likelihood function is: 

𝑑𝑑
𝑑𝑑𝜆𝜆

𝑙𝑙(𝜆𝜆) =
𝑑𝑑

𝑑𝑑𝜆𝜆
𝑙𝑙𝑙𝑙𝑙𝑙 (𝐿𝐿(𝜆𝜆)) =

𝑘𝑘
𝜆𝜆

− � 𝑚𝑚𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 

This leads to the maximum likelihood estimator of  

�̂�𝜆 =
1
𝑦𝑦�
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Pareto distribution 

The logarithmic likelihood function of the Pareto distribution is given by 

𝑙𝑙(𝜆𝜆) = 𝑘𝑘 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝜆𝜆) + 𝑘𝑘 ∗ 𝜆𝜆 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) − (𝜆𝜆 + 1) � 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑚𝑚𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

 

The derivative of the log likelihood function is: 

𝑑𝑑
𝑑𝑑𝜆𝜆

𝑙𝑙(𝜆𝜆) =
𝑘𝑘
𝜆𝜆

+ 𝑘𝑘 ∗ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑊𝑊) − � 𝑙𝑙𝑙𝑙𝑙𝑙 (𝑚𝑚𝑖𝑖)
𝑘𝑘

𝑖𝑖=1

 

This yields the maximum likelihood estimator of λ: 

�̂�𝜆 =
𝑘𝑘

∑ 𝑙𝑙𝑙𝑙𝑙𝑙(𝑚𝑚𝚤𝚤/𝑊𝑊)𝑘𝑘
𝚤𝚤=1

������������������� 

 

Conditional Weibull distribution 

The maximum likelihood estimator for the Conditional Weibull distribution is calculated using its similarity 
with the Gumbel distribution. If an observation set T has a Weibull distribution with parameters λ and τ 
than log(T) has a Gumbel distribution with parameters: 

𝜏𝜏 = −
1
𝜎𝜎

𝜆𝜆 = �
1

𝑒𝑒𝑚𝑚𝑒𝑒 (𝜇𝜇)
�

𝜏𝜏 
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